On Variational Definition of Quantum Entropy
نویسنده
چکیده
Entropy of distribution P can be defined in at least three different ways: 1) as the expectation of the Kullback-Leibler (KL) divergence of P from elementary δ -measures (in this case, it is interpreted as expected surprise); 2) as a negative KL-divergence of some reference measure ν from the probability measure P; 3) as the supremum of Shannon’s mutual information taken over all channels such that P is the output probability, in which case it is dual of some transportation problem. In classical (i.e. commutative) probability, all three definitions lead to the same quantity, providing only different interpretations of entropy. In non-commutative (i.e. quantum) probability, however, these definitions are not equivalent. In particular, the third definition, where the supremum is taken over all entanglements of two quantum systems with P being the output state, leads to the quantity that can be twice the von Neumann entropy. It was proposed originally by V. Belavkin and Ohya [1] and called the proper quantum entropy, because it allows one to define quantum conditional entropy that is always non-negative. Here we extend these ideas to define also quantum counterpart of proper cross-entropy and cross-information. We also show inequality for the values of classical and quantum information.
منابع مشابه
Optimal Decompositions with Respect to Entropy and Symmetries
The entropy of a subalgebra, which has been used in quantum ergodic theory to construct a noncommutative dynamical entropy, coincides for N-level systems and Abelian subalgebras with the notion of maximal mutual information of quantum communication theory. The optimal decompositions of mixed quantum states singled out by the entropy of Abelian subalgebras correspond to optimal detection schemes...
متن کاملA Preferred Definition of Conditional Rényi Entropy
The Rényi entropy is a generalization of Shannon entropy to a one-parameter family of entropies. Tsallis entropy too is a generalization of Shannon entropy. The measure for Tsallis entropy is non-logarithmic. After the introduction of Shannon entropy , the conditional Shannon entropy was derived and its properties became known. Also, for Tsallis entropy, the conditional entropy was introduced a...
متن کاملCoherent Control of Quantum Entropy via Quantum Interference in a Four-Level Atomic System
The time evaluation of quantum entropy in a four-level double- type atomic system is theoretically investigated. Quantum entanglement of the atom and its spontaneous emission fields is then discussed via quantum entropy. It is found that the degree of entanglement can be increased by the quantum interference induced by spontaneous emission. The phase dependence of the atom-field entanglement is...
متن کاملEnergy states and exchange energy of coupled double quantum dot in a magnetic field
The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...
متن کاملEnergy states and exchange energy of coupled double quantum dot in a magnetic field
The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...
متن کامل